Oxide quasicrystal approximants in the $\mathrm{Ba}-\mathrm{Ti}-\mathrm{O}$ system on Pd(111): A LEED and STM study

F. E. Wührl ${ }^{1}$, S. Schenk ${ }^{1}$, O. Krahn ${ }^{1}$, S. Förster ${ }^{1}$, W. Widdra ${ }^{1}$
${ }^{1}$ Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale)
friederike.wuehrl@physik.uni-halle.de

Two-dimensional oxide quasicrystals are found in Ba - or Sr - decorated $\mathrm{Ti}_{2} \mathrm{O}_{3}$ monolayers supported on $\mathrm{Pt}(111)$ substrates [1,2,3]. In these systems, the alkaline earth metal ions form the vertex positions of a dodecagonal triangle-square-rhombus tiling. In this contribution, we report on structure formation in two-dimensional $\mathrm{Ba}-\mathrm{Ti}-\mathrm{O}$ on $\mathrm{Pd}(111)$, which possesses a 1% reduced lattice parameter in comparison to $\mathrm{Pt}(111)$. We find a series of quasicrystal approximants with varying Ba density. At a stoichiometry of $\mathrm{Ba}_{0.67} \mathrm{Ti}_{2} \mathrm{O}_{3}$ we observe a triangle-square tiling, the σ-phase approximant. Higher Ba densities result in patches of this triangle-square tiling with one-dimensional antiphase domain boundaries in between. This way rhombuses are introduced to the tiling. The frequency of the antiphase domain boundaries is adapted to the surplus of Ba [4]. At the nominal composition of the oxide quasicrystal of $\mathrm{Ba}_{0.73} \mathrm{Ti}_{2} \mathrm{O}_{3.10}$ such antiphase domain boundaries are incorporated in two orthogonal directions, introducing periodic unit cells with a triangle-square-rhombus tiling [5]. The unit cell of the resulting structure is orthorhombic with dimensions of (2.6×6.4) nm^{2} inclining an angle of 92.5°. By applying the tiling decoration scheme of oxide quasicrystals to this structure [2,6], the complex $\mathrm{Ti}_{n} \mathrm{O}_{n}$ ring structure with its different ring sizes of $n=4,7,10$ hosting the Ba atoms can be unraveled as shown in Figure 1. It turns out that this orthorhombic phase forms at 73% coverage of all $\mathrm{Ti}_{n} \mathrm{O}_{n}$ rings with Ba and it contains 40 $\mathrm{Ba}, 110 \mathrm{Ti}$ and 170 oxygen atoms. The complex diffraction pattern of this phase will be discussed in the light of its subtle differences to the diffraction of a dodecagonal structure.

Fig. 1. Phase diagram of monolayer $\mathrm{Ba}_{x} \mathrm{Ti}_{2} \mathrm{O}_{3}$ on $\mathrm{Pd}(111)$ depending on their Ba density (top axis) and relative $\mathrm{Tin}_{n} \mathrm{O}_{\mathrm{n}}$ ring occupation (bottom axis) [5].

[^0]
[^0]: [1] Förster, S. et al., Nature, 502, 215 (2013)
 [2] Schenk, S. et al., Nature Communication, 13, 7542 (2022)
 [3] Schenk, S. et al., J. Phys.: Condens. Matter, 29, 134002 (2017)
 [4] Wührl, F. E. et al., Physica Status Solidi B, 257, 1900620 (2020)
 [5] Wührl, F. E. et al., Physical Review B, 107, 195414 (2023)
 [6] Cockayne, E. et al., Physical Review B, 93, 020101(R) (2016)

