Nucleation Stage for the Oriented Growth of Tantalum Sulfide Monolayers on $\mathrm{Au}(111)$

T. Chagas, ${ }^{1, *}$ K. Mehlich, ${ }^{1}$ A. Samad, ${ }^{2}$ C. Grover, ${ }^{1}$ D. Dombrowski, ${ }^{1,3}$ J. Cai, ${ }^{1}$ U. Schwingenschlög| ${ }^{2}$ and C. Busse ${ }^{1}$
${ }^{1}$ Department Physik, Universität Siegen, Walter-Flex-Str. 3, 57072, Siegen, Germany
${ }^{2}$ Physical Science and Engineering Division, King Abdullah University of Science and Technology, 23955-6900, Thuwal, Saudi Arabia
${ }^{3}$ Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 10, 48149, Münster, Germany

thais.chagas@uni-siegen.de

We study the nucleation stage in the epitaxial growth of monolayer TaS_{2} as a model system for monolayer transition metal sulfides [1]. The growth was done under ultra-high vacuum conditions with $\mathrm{Au}(111)$ as a substrate on which the metal atoms are evaporated, and the sulfur is provided from a background of $\mathrm{H}_{2} \mathrm{~S}$. Using scanning tunneling microscopy (STM), we find atomic-scale protrusions with a well-defined triangular shape that act as nuclei for the further growth of extended tantalum sulfide monolayers (figure 1, left panel). We identify these protrusions as TaS_{3} (figure 1, right panel) using density functional theory (DFT). We propose that their unique orientation is the cause of the welldefined orientation of a complete TaS_{2} layer found under favorable growth conditions [2].

Fig. 1. (Left panel) Atomically-resolved STM topographic image of the protrusions (appearing as three dots) on $\mathrm{Au}(111)$. Image parameters: $1.9 \mathrm{~nm} \times 1.9 \mathrm{~nm}, U=-0.3 \mathrm{~V}, I=2.3 \mathrm{nA}$. (Right panel) Structural configuration of TaS_{3} (top view) with a Ta atom (shown in blue) embedded in the $\mathrm{Au}(111)$ substrate (shown in gold) and connected to three S atoms (shown in yellow).
[1] Chagas, T., Mehlich, K., Samad, A., Grover, C., Dombrowski, D., Cai, J., Schwingenschlögl, U., Busse, C. J. Phys. Chem. C, 127, 5622 (2023). DOI: 10.1021/acs.jpcc.3c00234
[2] Dombrowski, D. Samad, A., Mehlich, K., Chagas, T., Schwingenschlögl, U., Busse, C. 2D Mater. 10, 025005 (2023). DOI: 10.1088/2053-1583/acb279

