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By using first-principles DFT modeling and a rigorous theoretical approach to calculating first-order
Raman scattering cross-sections [1], we study temperature-dependent shapes of Raman bands in
popular representative van der Waals materials [2]: including 2H-MoS;, a heterostructure of 2H-
MoS,/graphene, and semi-metallic 17-TiS,. We consider anharmonicity-induced effects in the models:
thermal expansion and all significant phonon-phonon scattering processes.

While it is well-known that the anharmonicity of a crystal typically causes a red-shift of Raman bands’
positions and broadens their linewidths, it is usually not taken into account that anharmonicity-induced
changes are internally dependent on Raman shift of the incident light [1]. Consequently, the shapes of
observed Raman bands might not remain perfectly Lorentzian. Instead, they can take the form of quasi-
Lorentzian functions with centers and broadening parameters dependent on Raman shift, leading to
an asymmetry of the Raman bands [1].

In our work, we comprehensively study positions, bandwidths, and asymmetry of Raman bands in the
above-listed van der Waals materials. The parameters of each band are dominated by the
anharmonicity of the system, which itself increases with the temperature. The most intriguing and
counter-intuitive situation occurs in 1T-TiS;, in which large anharmonicity leads to a significant
dependence of the first-order A;g band’s parameters on Raman shift and to its asymmetric broadening
— making an illusion of another band’s formation.
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Fig. 1. Temperature evolution of the Aig Raman band in TiS; and dispersion of its quasi-Lorentzian parameters.
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