Bandgap Modulation of Boron Nitride-doped Graphene

<u>Sergi Campos-Jara⁺¹</u>, Laura Caputo⁺², Tycho Roorda¹, Tjerk Benschop³, Amber Mozes³, Vladimir Calvi^{1,4}, Mauricio J. Pietro⁵, Liviu C. Tanase⁵, Lucas de Caldas⁵, Aarti Tiwari⁵, Rick Spierenburg¹, David v. Velden¹, Thomas Schmidt⁵, Richard v. Rijn⁴, Milan P. Allan³, Jean-Christophe Charlier² and Irene M.N. Groot¹

¹ Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands. ² Institute of Condensed Matter and Nanosciences, Université catholique de Louvain (UCLouvain),

Chemin des´etoiles 8,

Louvain-la-Neuve, B-1348, Belgium.

 ³ Leiden Institute of Physics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
⁴ Applied Nanolayers, Delft University of Technology, Feldmannweg 17, 2628 CT Delft, The Netherlands.

⁵ Department of Interface Science, Fritz-Haber-institut der Max-Planck-Gesellschaf, Faradayweg 4-6, 14195 Berlin, Germany

s.campos.jara@lic.leidenuniv.nl

Since its discovery, graphene has shown to exhibit remarkable electronic properties [1]. Numerous techniques have been devised to create high-performance devices by manipulating the bandgap in order to enhance their semiconducting properties [2].

Doping has proven to be one of the most effective methods for bandgap engineering. Experimental and theoretical studies on graphene doping show the possibility of making p-type and n-type semiconducting graphene by substituting C atoms. Boron and nitrogen have been specifically studied during the last years due to the interesting insulating behavior of h-BN. Boron, nitrogen, and carbon can be atomically mixed to form various semiconducting, hexagonal, layered structures. Experimental and theoretical studies have indicated that BNC nanostructures show semiconducting properties with small bandgaps [2,3]. Low concentrations of borazine rings within the graphene structure can modify graphene's electronic properties to form a 2D semiconductor material with homogeneous patterns [4,5]. The intercalation of hexagonal BN (h-BN) within the graphene lattice has already been successfully achieved, however, segregation of both materials has been the main issue. Recent research has demonstrated that incorporating borazine-like molecules with carbon structures into graphene can result in reduced segregation of h-BN domains [5,6]. Herrera Reinoza et al. demonstrated a notable example by depositing hexamethylborazine onto Ir(111), which yielded numerous boron-nitrogencarbon (BNC) domains exhibiting low BN segregation and an estimated bandgap ranging between 1.4 and 1.6 eV [6].

To grow our boron nitride-doped graphene nanomaterial we first synthesized graphene via chemical vapor deposition (CVD) by cyclic exposures to 10⁻⁵ mbar of ethylene for 10 minutes with subsequent annealing at 1100 K for 10 minutes. We have successfully doped our graphene by exposing it to hexamethylborazine right after the 3rd cycle of graphene synthesis. Auger electron spectroscopy demonstrated the presence of B, C and N in the sample. A bandgap was opened on our BN-doped graphene, forming a semiconductor material.

[1] Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat Mater 6, 183–191 (2007).

[2] Ci, L. et al. Atomic layers of hybridized boron nitride and graphene domains. 9, 430–435 (2010).

[3] Caputo, L., Nguyen, V.-H. & Charlier, J.-C. First-principles study of the structural and electronic properties of BN-ring doped graphene. *Phys Rev Mater* **6**, 114001 (2022).

[4] Gao, L., Guest, J. R. & Guisinger, N. P. Epitaxial graphene on Cu(111). Nano Lett 10, 3512–3516 (2010).

[5] Sánchez-Sánchez, C. *et al.* On-Surface Synthesis of BN-Substituted Heteroaromatic Networks. *ACS Nano* **9**, 9228–9235 (2015).

[6] Herrera-Reinoza, N., Dos Santos, A. C., De Lima, L. H., Landers, R. & De Siervo, A. Atomically Precise Bottom-Up Synthesis of h-BNC: Graphene Doped with h-BN Nanoclusters. *Chemistry of Materials* **33**, 2871–2882 (2021).