Direct observation of chemical structure changes of butyl tin oxo cluster thin film upon extreme ultraviolet irradiation

<u>K. J. Kim¹</u>, S. Noh¹, G. Kim¹, H. Choi¹, D. Kim¹, Y. Yu², D. Kim³, J. Bang⁴, H. Yun⁴, H.-J. Shin⁵, B. Mun³, J. Baik¹, S. Lee¹, H.-D. Jeong⁴

¹Pohang Accelerator Laboratory, POSTECH, 80 Jigokro 127-beongil, Namgu, Pohang, Gyeongbuk, 37673, Korea.

² Korea Basic Science Institute, 169-148, Gwahak-ro, Yuseong-gu, Daejeon,34133, Korea ³Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Korea ⁴Department of Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Korea

⁵Department of Physics, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Korea

kjkim@postech.ac.kr

The importance of extreme ultraviolet(EUV) photoresist has been emphasized in the semiconductor industry and advanced experimental method are required to attain a fundamental understanding of the reaction mechanism in photoresists exposed to EUV irradiation. Soft X-ray spectroscopy is useful because it provides information about the chemical and elemental composition behavior of a photoresist before/after EUV irradiation. In the present work, scanning photoelectron microscopy (SPEM) is used to probe the change in the local chemical structure of a photoresist molecule, butyl-tinoxo-cluster (B-TOC, {(BuSn)₁₂O₁₄(OH)₆}(O₃SC₆H₄CH₃)₂) after EUV irradiation. We directly measured the change in elemental composition of the B-TOC as a result of EUV irradiation.

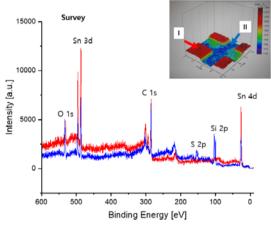


Fig. 1. Local chemical analysis using SPEM on an EUV-patterned B-TOC sample after the sample was development using toluen. Here, the expousure level reached to 480 mJ/cm². Survey spectrum I (blue) was recorded at a non-EUV-irradiated area, and survey spectrum II (red) was recorded at an EUV-irradiated area.