Multidimensional sensing of proximity magnetic fields via intrinsic activation of dark excitons in WSe₂/CrCl₃ heterostructure

<u>Ł. Kipczak</u>^{1*}, Z. Chen², P. Huang^{2,3}, K. Vaklinova², K. Watanabe⁴, T. Taniguchi⁴, A. Babiński¹, M. Koperski², M. R. Molas¹

 ¹ University of Warsaw, Warsaw, Poland
² National University of Singapore, Singapore, Singapore
³ Guilin University of Electronic Technology, Guilin, China
⁴ National Institute for Materials Science, Tsukuba, Japan *lucja.kipczak@fuw.edu.pl

Monolayers (MLs) of WSe₂ are darkish materials with ground dark (optically inactive) exciton state. The neutral dark excitons exhibit a double (fine) structure comprising so-called grey (X^D) and dark (X^D) complexes. The X^D emission can be observed only due to the applied in-plane and out-of-plane magnetic field [1]. Magnetic layered materials with intrinsic magnetic order [2] are perfect candidates to be used to brighten the dark exciton due to the proximity effect. We employ the polarization resolved photoluminescence (PL) at low temperature (T=5 K) and temperature dependent PL measurement to investigate the proximity effect in two heterostructures (HS1 and HS2) comprising the WSe₂ ML, capped with the CrCl₃ layer and encapsulated in hexagonal BN.

Figure 1: (a) PL spectra of 10 nm CrCl₃ flake (blue), ML of WSe₂ (red) and of WSe₂/CrCl₃ HS (green). (b) The polarization-resolved PL spectra of X^{D} line for two orthogonal linear polarizations. (c) Corresponding linear polarization dependence of X^{D}

and encapsulated in hexagonal BN. Fig. 1 (a) displays photoluminescence spectra of 10 CrCl3 flake, WSe₂ and HS1 nm $WSe_2/CrCl_3$ heterostrucure. The spectrum of CrCl₃ flake exhibits a broad-band optical response. The spectrum of WSe₂ is analogous to those previously reported and comprises in particular emission lines related to the bright neutral exciton (X^B) and dark exciton (X^D). The PL spectra, measured at the edges of WSe₂/CrCl₃ heterostructure (HS1) is dominated by single narrow line, with energies close to the X_D . We attribute this line to the neutral dark exciton (X^D) activated by the in-plane component of the proximity field from the planar ferromagnet, initially based on the emission energy. We base this conclusion also on the polarization-resolved PL spectra which shows a X^D line from the HS1 characterized by two linearly polarized components with emission energy changes with detection angle with energy separation of about 700 µeV and 821 μ eV which is shown on Fig. 1 (b) and (c),

respectively. We also complete our observation by verifying brightening of the dark exciton by inspection of the temperature dependence on HS2. The X^D feature disappears at the temperature of about 30 K which corresponds to the Cure temperature $T_c = 27$ K of bulk CrCl₃ [3]. We conclude that emission lines in the HSs are related to the dark (X^D) exciton brightened by the inplane magnetic field due to the non-zero net in-plane magnetization of the CrCl₃ layer.

^[1] M. R. Molas, et al., Phys. Rev. Lett. 123, 096803 (2019).

^[2] M. Gilbertini, M. Koperski, et el. Nat. Nanotechnol. 14, 408-419 (2019).

^[3] M. A. McGuire, Crystals 7, 121, (2017).