Exploring tuneable ethylene production via the electrochemical oxidative coupling of methane (EOCM): a case study of doped titanates

F. Grajkowski,¹ S. Chandra,² D. Kim,² G. Dimitrakopoulos,^{2,3} S. Koohfar,⁴ B. Yildiz^{2,4}

¹Department of Chemistry, Massachusetts Institute of Technology

²Department of Materials Science and Engineering, Massachusetts Institute of Technology

³Department of Mechanical Engineering, Massachusetts Institute of Technology

⁴Department of Nuclear Science and Engineering, Massachusetts Institute of Technology

*byildiz@mit.edu

Ethylene (C₂H₄) is one of the most valuable compounds in the chemical industry but the current ethylene production pathway is the second-biggest CO₂-generating process in industry. In 1982, an alternative ethylene production pathway, the oxidative coupling of methane (OCM), was proposed. Unfortunately, this OCM approach suffers from significant "deep oxidation" where CH₄ is instead combusted to CO/CO₂ and H₂O.[1] To improve the C₂ selectivity and yield of OCM processes, recent works have focused on integrating OCM activity into solid oxide electrolyser systems. In this electrochemical OCM (EOCM) approach, O^{2–} ions from the cathode are transported to the anode where they oxidise CH₄ molecules to yield the desired C₂ (C₂H₄ and C₂H₆) products.[2]

In this study, we use La_{0.3}Sr_{0.7}TiO₃ as the anode material and catalyst for EOCM. By using combined electrochemical and gas chromatographic analyses, we demonstrate that this anode can successfully yield the desired C₂ products and can respond to changes in the O²⁻ flux. We highlight that the C₂ selectivity can be tuned using the applied potential: we show an unprecedented tuneability in the C₂ selectivity with enhancements of >3x at higher currents relative to lower currents. We rationalize these results mechanistically and demonstrate that the oxygen species active for selective OCM can be selectively produced at the anode surface. These results furnish the ability to increase both the methane conversion and C₂ selectivity. Additionally, we characterise the anode stability using methods such as X-ray photoelectron spectroscopy, Auger spectroscopy and energy dispersive X-ray spectroscopy. These results illustrate that the anode material is stable under the EOCM operational conditions with no phase decomposition, a notorious limitation of other EOCM anodes.[3] Our results thus demonstrate that titanate-based systems are ideal candidates for EOCM.

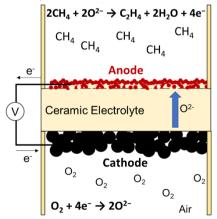


Fig. 1. Schematic representation of the EOCM reactor and the associated reactions.

- [2] C. Zhu, S. Hou, X. Hu, J. Lu, F. Chen, K. Xie, Nature Communications, 10, 1173 (2019)
- [3] K.P. Ramaiyan, L.H. Denoyer, A. Benavidez, F.H. Garzon, Communications Chemistry, 4, 139 (2021)

^[1] M.A. Barteau, Journal of Catalysis, 408, 173 (2022)